Changes for page 3.3 Control
Last modified by Admin on 2025/04/09 12:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -69,14 +69,8 @@ 69 69 * Min-Max SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. Final SOC will be a) 100% if any cell has 100% SOC, b) 0% if any cell has 0% SOC; 70 70 * Max-Min SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. Final SOC will be a) 100% if all cells have 100% SOC, b) 0% if all cells have 0% SOC. 71 71 72 -To change other settings of SOC estimation, select the "Control → SOC estimation” section: 73 - 74 - 75 -In this section: 76 - 77 -* ((( 78 78 Other parameters: 79 - )))73 + 80 80 * Scale the final SOC – a flag to scale the battery SOC by the following values; 81 81 * SOC corresponding to 0% – the battery SOC that sets to be 0%; 82 82 * SOC corresponding to 100% – the battery SOC that sets to be 100%. ... ... @@ -87,7 +87,6 @@ 87 87 * Coulomb counting correction (temperature) – the dependence of battery capacity on temperature; 88 88 * Coulomb counting correction (cycles) – the dependence of battery capacity on the number of charge-discharge cycles. 89 89 90 - 91 91 === SOC correction === 92 92 93 93 The BMS Mini device can recalculate the battery SOC after long-term storage or after long-term working in the case when the battery was not charged fully or discharged totally. Recalculation is done based on the tabular dependency Uocv = Uocv (SOC, t) (see [[SOC estimation>>doc:||anchor="HSOCestimation"]]). ... ... @@ -109,18 +109,26 @@ 109 109 110 110 Calculation of the resistance of cells is carried out in two ways. The first method is used when the battery passes from a relaxation state to a charge or discharge state, wherein the cell resistance value 111 111 112 -R = (U-U,,ocv,,) / I,,stable,,, 105 +{{formula fontSize="SMALL" imageType="PNG"}} 106 +R = \frac{U-U_{ocv}}{I_{stable}} 107 +{{/formula}} 113 113 114 114 where U is the cell voltage measured in the charge or discharge state, V; U,,ocv,, is the cell voltage measured in the state of relaxation (before switching to the state of charge or discharge); I,,stable,, – stabilized current through the cell in the state of charge or discharge. 115 115 116 116 The second method is used for a stepwise change in the current through the cell, while the value of the cell resistance: 117 117 118 -R = (U,,2,,-U,,1,,) / (I,,stable2,,-I,,stable1,,) provided that | I,,stable2,,-I,,stable1,, | > 0.2 × Q,,max,, 113 +{{formula fontSize="SMALL"}} 114 +R = \frac{U_2-U_1}{I_{stable2}-I_{stable1}} 115 +{{/formula}} 119 119 120 - (Q,,max,,isthe maximum cell capacity),117 +provided that 121 121 122 -where U,,2,, is the voltage on the cell at the moment when the stabilized current I,,stable2,, is flowing through it; U,,1,, – the voltage on the cell at the moment when the stabilized current I,,stable1,, flowing through it. 119 +{{formula fontSize="SMALL"}} 120 +| I_{stable2}-I_{stable1} | > 0.2 × Qmax 121 +{{/formula}} 123 123 123 +where Q,,max,, — the maximum cell capacity,U,,2,, — voltage on the cell at the moment when the stabilized current I,,stable2,, is flowing through it; U,,1,, — the voltage on the cell at the moment when the stabilized current I,,stable1,, flowing through it. 124 + 124 124 The stabilized current I,,stable,, = I, if during the stabilization time the instantaneous current I is in the range from 0.95 × I to 1.05 × I. 125 125 126 126 To change parameters of the algorithm for calculating the cell resistance, select the "Control → Resistance estimation" section: ... ... @@ -137,6 +137,34 @@ 137 137 138 138 The calculated resistance is accepted by the system as valid (and therefore updated) if its value is in the range from Resistance/2 to “Maximum resistance factor” × Resistance, where "Resistance" is the nominal resistance of the cell (see [[Common settings>>doc:||anchor="HCommonsettings"]]). If the calculated resistance value is greater than the value (Maximum resistance factor × Resistance), the updated resistance value will be equal to the value (Maximum resistance factor × Resistance). 139 139 141 +=== Low SOC (signal) === 142 + 143 +To change the parameters of the generation a signal about low battery level, select the "Control → Low SOC (signal)" section: 144 + 145 +[[image:1740396460923-423.png||data-xwiki-image-style-alignment="center" data-xwiki-image-style-border="true" height="141" width="800"]] 146 + 147 +In this section: 148 + 149 +* Enable – a flag to enable signal generation; 150 +* Minimum SOC, %; 151 +* Tolerant SOC, %; 152 +* Delay before setting the signal, second; 153 +* Delay before clearing the signal, second; 154 +* Lock – lock the signal until the device is reset. 155 + 156 +Signal generation conditions: 157 + 158 +* the battery SOC is less than the “Minimum SOC” value during the “Delay before setting the signal” time. 159 + 160 +Conditions for clearing the signal: 161 + 162 +* the battery SOC is greater than the “Tolerant SOC” during the “Delay before clearing the signal” time. 163 + 164 +(% class="box infomessage" %) 165 +((( 166 +The "Low SOC signal" is indicative and can be output to a discrete output or a power switch. 167 +))) 168 + 140 140 === Charge map === 141 141 142 142 The BMS Mini device calculates maximum allowable charge current values in respect to SOC, battery temperature, contactor temperature and cell voltage.
- 1740396388810-840.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.admin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.6 KB - Content
- 1740396445096-172.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.admin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.8 KB - Content
- 1740396460923-423.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.admin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +21.8 KB - Content