Changes for page 3.3 Control
Last modified by Admin on 2025/04/09 12:15
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -102,26 +102,18 @@ 102 102 103 103 Calculation of the resistance of cells is carried out in two ways. The first method is used when the battery passes from a relaxation state to a charge or discharge state, wherein the cell resistance value 104 104 105 -{{formula fontSize="SMALL" imageType="PNG"}} 106 -R = \frac{U-U_{ocv}}{I_{stable}} 107 -{{/formula}} 105 +R = (U-U,,ocv,,) / I,,stable,,, 108 108 109 109 where U is the cell voltage measured in the charge or discharge state, V; U,,ocv,, is the cell voltage measured in the state of relaxation (before switching to the state of charge or discharge); I,,stable,, – stabilized current through the cell in the state of charge or discharge. 110 110 111 111 The second method is used for a stepwise change in the current through the cell, while the value of the cell resistance: 112 112 113 -{{formula fontSize="SMALL"}} 114 -R = \frac{U_2-U_1}{I_{stable2}-I_{stable1}} 115 -{{/formula}} 111 +R = (U,,2,,-U,,1,,) / (I,,stable2,,-I,,stable1,,) provided that | I,,stable2,,-I,,stable1,, | > 0.2 × Q,,max,, 116 116 117 - providedthat113 +(Q,,max,, is the maximum cell capacity), 118 118 119 -{{formula fontSize="SMALL"}} 120 -| I_{stable2}-I_{stable1} | > 0.2 × Qmax 121 -{{/formula}} 115 +where U,,2,, is the voltage on the cell at the moment when the stabilized current I,,stable2,, is flowing through it; U,,1,, – the voltage on the cell at the moment when the stabilized current I,,stable1,, flowing through it. 122 122 123 -where Q,,max,, — the maximum cell capacity,U,,2,, — voltage on the cell at the moment when the stabilized current I,,stable2,, is flowing through it; U,,1,, — the voltage on the cell at the moment when the stabilized current I,,stable1,, flowing through it. 124 - 125 125 The stabilized current I,,stable,, = I, if during the stabilization time the instantaneous current I is in the range from 0.95 × I to 1.05 × I. 126 126 127 127 To change parameters of the algorithm for calculating the cell resistance, select the "Control → Resistance estimation" section: ... ... @@ -138,34 +138,6 @@ 138 138 139 139 The calculated resistance is accepted by the system as valid (and therefore updated) if its value is in the range from Resistance/2 to “Maximum resistance factor” × Resistance, where "Resistance" is the nominal resistance of the cell (see [[Common settings>>doc:||anchor="HCommonsettings"]]). If the calculated resistance value is greater than the value (Maximum resistance factor × Resistance), the updated resistance value will be equal to the value (Maximum resistance factor × Resistance). 140 140 141 -=== Low SOC (signal) === 142 - 143 -To change the parameters of the generation a signal about low battery level, select the "Control → Low SOC (signal)" section: 144 - 145 -[[image:1740396460923-423.png||data-xwiki-image-style-alignment="center" data-xwiki-image-style-border="true" height="141" width="800"]] 146 - 147 -In this section: 148 - 149 -* Enable – a flag to enable signal generation; 150 -* Minimum SOC, %; 151 -* Tolerant SOC, %; 152 -* Delay before setting the signal, second; 153 -* Delay before clearing the signal, second; 154 -* Lock – lock the signal until the device is reset. 155 - 156 -Signal generation conditions: 157 - 158 -* the battery SOC is less than the “Minimum SOC” value during the “Delay before setting the signal” time. 159 - 160 -Conditions for clearing the signal: 161 - 162 -* the battery SOC is greater than the “Tolerant SOC” during the “Delay before clearing the signal” time. 163 - 164 -(% class="box infomessage" %) 165 -((( 166 -The "Low SOC signal" is indicative and can be output to a discrete output or a power switch. 167 -))) 168 - 169 169 === Charge map === 170 170 171 171 The BMS Mini device calculates maximum allowable charge current values in respect to SOC, battery temperature, contactor temperature and cell voltage.