Changes for page 3.3 Control
Last modified by Admin on 2025/04/09 12:14
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -70,8 +70,8 @@ 70 70 71 71 * Minimal SOC – the battery SOC is assumed to be the minimum SOC among the cells; 72 72 * Average SOC – the battery SOC is taken equal to the arithmetic average of the cell SOC; 73 -* Min-Max SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. Final SOC will be a) 100% if any cell have 100% SOC, b) 0% if any cell have 0% SOC;74 -* Max-Min SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. Final SOC will be a) 100% if all cells have 100% SOC, b) 0% if all cells have 0% SOC;73 +* Min-Max SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. Final SOC will be assumed to be a) 100% if any cell have 100% SOC, b) 0% if any cell 74 +* Max-Min SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. 75 75 76 76 Other parameters: 77 77 ... ... @@ -106,26 +106,18 @@ 106 106 107 107 Calculation of the resistance of cells is carried out in two ways. The first method is used when the battery passes from a relaxation state to a charge or discharge state, wherein the cell resistance value 108 108 109 -{{formula fontSize="SMALL" imageType="PNG"}} 110 -R = \frac{U-U_{ocv}}{I_{stable}} 111 -{{/formula}} 109 +R = (U-U,,ocv,,) / I,,stable,,, 112 112 113 -where U —the cell voltage measured in the charge or discharge state, V; U,,ocv,,—cell voltage measured in the state of relaxation (before switching to the state of charge or discharge); I,,stable,,—stabilized current through the cell in the state of charge or discharge.111 +where U is the cell voltage measured in the charge or discharge state, V; U,,ocv,, is the cell voltage measured in the state of relaxation (before switching to the state of charge or discharge); I,,stable,, – stabilized current through the cell in the state of charge or discharge. 114 114 115 115 The second method is used for a stepwise change in the current through the cell, while the value of the cell resistance: 116 116 117 -{{formula fontSize="SMALL"}} 118 -R = \frac{U_2-U_1}{I_{stable2}-I_{stable1}} 119 -{{/formula}} 115 +R = (U,,2,,-U,,1,,) / (I,,stable2,,-I,,stable1,,) provided that | I,,stable2,,-I,,stable1,, | > 0.2 × Q,,max,, 120 120 121 - providedthat117 +(Q,,max,, is the maximum cell capacity), 122 122 123 -{{formula fontSize="SMALL"}} 124 -| I_{stable2}-I_{stable1} | > 0.2 × Qmax 125 -{{/formula}} 119 +where U,,2,, is the voltage on the cell at the moment when the stabilized current I,,stable2,, is flowing through it; U,,1,, – the voltage on the cell at the moment when the stabilized current I,,stable1,, flowing through it. 126 126 127 -where Q,,max,, — the maximum cell capacity,U,,2,, — voltage on the cell at the moment when the stabilized current I,,stable2,, is flowing through it; U,,1,, — the voltage on the cell at the moment when the stabilized current I,,stable1,, flowing through it. 128 - 129 129 The stabilized current I,,stable,, = I, if during the stabilization time the instantaneous current I is in the range from 0.95 × I to 1.05 × I. 130 130 131 131 To change parameters of the algorithm for calculating the cell resistance, select the "Control → Resistance estimation" section: ... ... @@ -140,7 +140,7 @@ 140 140 * Minimum SOC – minimum cell SOC value for resistance calculation; 141 141 * Maximum SOC – maximum cell SOC value for resistance calculation. 142 142 143 -The calculated resistance is accepted by the system as valid (and therefore updated) if its value is in the range from Resistance 135 +The calculated resistance is accepted by the system as valid (and therefore updated) if its value is in the range from Resistance/2 to “Maximum resistance factor” × Resistance, where "Resistance" is the nominal resistance of the cell (see [[Common settings>>doc:||anchor="HCommonsettings"]]). If the calculated resistance value is greater than the value (Maximum resistance factor × Resistance), the updated resistance value will be equal to the value (Maximum resistance factor × Resistance). 144 144 145 145 === Low SOC (signal) === 146 146