Changes for page 3.3 Control
Last modified by Admin on 2025/04/09 12:14
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 -Battery management systems.BMS Main 3.3\. Configuration.WebHome1 +Battery management systems.BMS Main 3.3\. Settings.WebHome - Content
-
... ... @@ -8,7 +8,7 @@ 8 8 9 9 To change the common BMS settings, select the "Control → Common settings" section: 10 10 11 -[[image:1735 054851946-552.png||data-xwiki-image-style-alignment="center" data-xwiki-image-style-border="true" height="105" width="800"]]11 +[[image:1733322611547-671.png||data-xwiki-image-style-alignment="center" data-xwiki-image-style-border="true" height="124" width="800"]] 12 12 13 13 In this section: 14 14 ... ... @@ -16,10 +16,8 @@ 16 16 * Cell resistance – nominal (maximum) internal resistance of the cells, Ohm; 17 17 * Relax time (after charging) – a relaxation time after charging, second; 18 18 * Relax time (atfer discharging) – a relaxation time after discharging, second; 19 -* Reset parameters – a command to reset cells state of charge, capacity, and resistance; 20 -* Method of calculating the battery voltage: 21 -** Summation of cell voltages – the overall voltage is calculated as on sum of all cells in the battery; 22 -** Using voltage before contactors – the overall voltage is estimated as voltage before contactors measured by BMS. 19 +* Number of cycles – a number of charge-discharge cycles; 20 +* Reset parameters – a command to reset cells state of charge, capacity, and resistance. 23 23 24 24 The values “Capacity”, “Resistance”, “Cycles” are used to calculate the SOC of cells and the battery. 25 25 ... ... @@ -44,9 +44,8 @@ 44 44 45 45 To change the estimation algorithm for calculating the battery SOC, select the "Control → SOC estimation → Algorithm" section: 46 46 45 +[[image:1733322611549-423.png||data-xwiki-image-style-alignment="center" data-xwiki-image-style-border="true" height="148" width="800"]] 47 47 48 -[[image:1735056107942-306.png||data-xwiki-image-style-alignment="center" data-xwiki-image-style-border="true" height="141" width="800"]] 49 - 50 50 The following estimation algorithms supported: 51 51 52 52 * Voltage – by open circuit voltage; ... ... @@ -70,8 +70,7 @@ 70 70 71 71 * Minimal SOC – the battery SOC is assumed to be the minimum SOC among the cells; 72 72 * Average SOC – the battery SOC is taken equal to the arithmetic average of the cell SOC; 73 -* Min-Max SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. Final SOC will be a) 100% if any cell have 100% SOC, b) 0% if any cell have 0% SOC; 74 -* Max-Min SOC – the battery SOC is calculated based on the minimum and maximum SOC of the cells. Final SOC will be a) 100% if all cells have 100% SOC, b) 0% if all cells have 0% SOC; 70 +* Min-Max SOC – the battery SOC is taken based on the minimum and maximum SOC of the cells (recommended method). 75 75 76 76 Other parameters: 77 77 ... ... @@ -87,7 +87,7 @@ 87 87 88 88 === SOC correction === 89 89 90 -The BMS Main 3 device can recalculate the battery SOC after long-term storage or after long-term working in the case when the battery was not charged fully or discharged totally. Recalculation is done based on the tabular dependency Uocv = Uocv (SOC, t) (see [[SOC estimation>>doc:||anchor="HSOCestimation"]]).86 +The BMS Main 3 device can recalculate the battery SOC after long-term storage or after long-term working in the case when the battery was not charged fully or discharged totally. Recalculation is done based on the tabular dependency Uocv = Uocv (SOC, t) (see section** **2.3.2). 91 91 92 92 To configure parameters for periodically correcting the battery state of charge, select the "Control → SOC correction" section: 93 93 ... ... @@ -106,17 +106,14 @@ 106 106 107 107 Calculation of the resistance of cells is carried out in two ways. The first method is used when the battery passes from a relaxation state to a charge or discharge state, wherein the cell resistance value 108 108 109 -{{formula fontSize="NORMAL" imageType="PNG"}} 110 -R = \frac{U-U_{ocv}}{I_{stable}} 111 -{{/formula}} 105 +R = (U-U,,ocv,,) / I,,stable,,, 112 112 113 -where U —the cell voltage measured in the charge or discharge state, V; U,,ocv,,—cell voltage measured in the state of relaxation (before switching to the state of charge or discharge); I,,stable,,—stabilized current through the cell in the state of charge or discharge.107 +where U is the cell voltage measured in the charge or discharge state, V; U,,ocv,, is the cell voltage measured in the state of relaxation (before switching to the state of charge or discharge); I,,stable,, – stabilized current through the cell in the state of charge or discharge. 114 114 115 115 The second method is used for a stepwise change in the current through the cell, while the value of the cell resistance: 116 116 117 117 R = (U,,2,,-U,,1,,) / (I,,stable2,,-I,,stable1,,) provided that | I,,stable2,,-I,,stable1,, | > 0.2 × Q,,max,, 118 118 119 - 120 120 (Q,,max,, is the maximum cell capacity), 121 121 122 122 where U,,2,, is the voltage on the cell at the moment when the stabilized current I,,stable2,, is flowing through it; U,,1,, – the voltage on the cell at the moment when the stabilized current I,,stable1,, flowing through it. ... ... @@ -135,7 +135,7 @@ 135 135 * Minimum SOC – minimum cell SOC value for resistance calculation; 136 136 * Maximum SOC – maximum cell SOC value for resistance calculation. 137 137 138 -The calculated resistance is accepted by the system as valid (and therefore updated) if its value is in the range from Resistance/2 to “Maximum resistance factor” × Resistance, where "Resistance" is the nominal resistance of the cell (see [[Commonsettings>>doc:||anchor="HCommonsettings"]]). If the calculated resistance value is greater than the value (Maximum resistance factor × Resistance), the updated resistance value will be equal to the value (Maximum resistance factor × Resistance).131 +The calculated resistance is accepted by the system as valid (and therefore updated) if its value is in the range from Resistance/2 to “Maximum resistance factor” × Resistance, where "Resistance" is the nominal resistance of the cell (see section 2.3.1). If the calculated resistance value is greater than the value (Maximum resistance factor × Resistance), the updated resistance value will be equal to the value (Maximum resistance factor × Resistance). 139 139 140 140 === Low SOC (signal) === 141 141 ... ... @@ -577,7 +577,7 @@ 577 577 ** Balance on charge or relaxed - balancing is performed while and after the charging and in the relaxed state (in “Charge ON”, “Charge OFF”, “Relaxed (after charging)” and “Relaxed (after discharging)” states); 578 578 ** Balance always – balancing is always performed regardless the battery state; 579 579 580 -[[image:1733322883462-975.png ||data-xwiki-image-style-alignment="center" data-xwiki-image-style-border="true" height="74" width="600"]]573 +[[image:1733322883462-975.png]] 581 581 582 582 * Minimum cell voltage to start balancing, V; 583 583 * Voltage deviation to start balancing;
- 1735054851946-552.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.admin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.9 KB - Content
- 1735056052237-170.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.admin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -32.1 KB - Content
- 1735056107942-306.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.admin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -33.0 KB - Content